

PS GmbH
Melisau 1255

6863 Egg / Austria

Introduction

Document date: 19.01.2021

This document describes the behaviour of the implementation of the pslock Firmware version :
blelock.nrf52832_xxaa.0.11.0.?.hex

It is based on the specification as described by the document “Specification 20.07.2020” and “'API_DUAL_LOCK (1).pdf”
Version: 06-08-2018. Changes for a new specification are discussed in a different document.

Concepts History

Changes to firmware version 0.15
Encryption:
Before firmware version 0.11, the user and admin keys were transmitted as plain text from the BLE client to the lock. As this
imposes the risk that a BLE sniffer can easily eavesdrop and thus get access to these keys, the following conceptual change
was introduced with firmware version 0.11:

- As an alternative to the 4 byte user key and the 6 byte admin key, 16 byte (128 bit) wide user and admin keys can
be used. These keys need to be generated by the BLE client and will typically be derived from passwords provided
by a human person (see https://en.wikipedia.org/wiki/Key_stretching)
The recommended algorithm for deriving the keys from the provided passwords is Argon2 (see
https://en.wikipedia.org/wiki/Argon2).
The lock is totally agnostic to the way how the keys are created.

- For authentication operations, the client needs to read a random number from the lock and perform an AES-128
encryption on this random number with the user or admin key acting as the AES key (which one, i.e. user or admin
key depends on the performed operation). The resulting encrypted 16 byte value is used as a passphrase and is
written to the respective characteristic of the lock. With this approach, a sniffer only sees the random number and
the passphrase but cannot deduce the key that was used for encryption.

- In order to prevent BLE sniffers from eavesdropping when user and admin keys are changed, each new 16 byte
user or admin key is transmitted AES-128 encrypted with the current admin key.

- As only single blocks of 128 bit are encrypted, the AES mode ECB (electronic codebook) is used. When encrypting
the data
61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F 70

with key
30 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35

the encrypted data must look like this
33 D6 E9 80 0D E5 8B A9 1F B2 48 91 84 D2 52 AD

The firmware version 0.11 BLE API is backward compatible with the previous firmware version but introduces a few
additional characteristics that are required to implement the mechanism outlined above. It ships with the crypt mode
configuration being deactivated, which makes the lock use the 4 byte user and 6 byte admin key like the versions before
0.11 did. In order to make use of the newly introduced concepts, the crypt mode must be activated by setting the 16 byte
admin code (see characteristic Adminfields).

Access to history data:
As history data can only be accessed, if the BLE client has acquired user or admin privileges, a new unlock mode was
introduced for the Unlock characteristic. With this mode, a user can authenticate itself without opening the lock.

Battery check:
When battery alarm is enabled, the battery voltage level is checked in regular intervals, even if the lock is not operated for a
longer period of time. If a critical low battery level is detected, the lock opens automatically. In earlier versions, the battery
level was only checked, when the lock was opened and closed.

Install card and door contact test:
The new special card “card_install” was introduced for factory testing.
In factory testing (i.e. while the lock’s history is still empty), a short sound is emitted, when the door contact changes to door
closed.

PS GmbH
Melisau 1255

6863 Egg / Austria

Configuration
Configuration is stored on flash and survives firmware updates which use “sector erase” via JLink. A “mass erase” might be
used instead of a “sector erase” for flashing the Softdevice and firmware. This will reset all configurations to default values
and clears all database tables. (CLI: “nrfjprog --family nRF52 --eraseall ...”).
All configuration structures have a version number to be compatible with future versions of that structure. In case of a non-
compatible change in the structure, the old configuration might get deleted and the default values take place.

Name Default Value Datatype Description

Lockname “PSLOCK” String, max 10 chars Advertised Lock name,
Written to PLCC in
LOCKMODE_GYM

Lockmode NORMAL(0) Uint8 enum of:
NORMAL(0),
GYM(1)
CARDCLEANER(2)
BOLT(4)

Lock operation mode

unlock_key_user “123400” String of 6 chars PIN to open/close the lock

unlock_key_admin “123456” String of 6 chars PIN to administer the lock

alarm_door_open_time_s 0 Uint8 [seconds] Alarm after this time. 0: No
Alarm

reaction_time_100ms 10 Uint16 [100ms steps]

open_after_time_m 720 uint16 (12h) Door opens after this
time. 0: to disable,
LOCKMODE_GYM only

mf_sector 4 uint8

mf_block 1 uint8

mf_akey [0xff 0xff 0xff
0xff 0xff 0xff]

Array uint8[6]

rfid_enabled true bool

ble_enabled true bool

battery_alarm_enabled true bool

external_interface_enabled false bool

rfid_reaction_time_ms 0 Uint16 [ms]

lock_open_time_s 4 Uint8 [s] LOCKMODE_NORMAL only.
Close lock after this amount of
time.

desfire_app_id [0x01 0x00
0x00]

Array uint8[3]

desfire_file_id 0 uint8

cryptmode 0 uint8 enum of:
CRYPT_OFF(0),
CRYPT_ON(1)

PS GmbH
Melisau 1255

6863 Egg / Austria

crypt_key_user [0x00 0x00 0x00
0x00 0x00 0x00
0x00 0x00 0x00
0x00 0x00 0x00
0x00 0x00 0x00
0x00]

Array uint8[16]

crypt_key_admin [0x00 0x00 0x00
0x00 0x00 0x00
0x00 0x00 0x00
0x00 0x00 0x00
0x00 0x00 0x00
0x00]

Array uint8[16]

Database

Table #MaxEntries Description

History 100 Lock/Unlock Event History

programming_card 1 UUID of programming card

user_card 100 UUIDs of user cards (whitelist)

Card types
All card types are defined by their non-changeable UID

Name UID Definition

Programming_card any Card with UID stored in the db “programming_card”
Card to enter programming mode.

User_card any Card with UID stored in the db “user_card”.
All user_card’s are “whitelisted”.
They are usable to lock/unlock the lock in
LOCKMODE_NORMAL, LOCKMODE_BOLT or
LOCKMODE_GYM..
In LOCKMODE_GYM, their UID is deleted from the whitelist
after unlocking.

regular_card any Any other card without a special meaning

Special cards

card_mode_normal 0x5ea63deb “Software: Standard”

card_mode_bolt 0xdacf32e9 “Software: Bolt”

card_mode_gym 0xf7a8333b “Software: Gym”

card_mode_gym_12 0x1e122acc “Software: Gym-12h”

card_mode_cardcleaner 0xf3e00100 “Software: Card Cleaner”

card_mode_alarm_door 0xaeec3deb “Software: Door Alarm”

PS GmbH
Melisau 1255

6863 Egg / Austria

card_ble_onoff 0x140c0000 “Software: Bluetooth On/Off”

card_alarm_battery 0x160c0000 “Battery check off”

card_install 0x0868d9a8 „Open lock in factory mode“

Programming_card

Defining the programming_card of a lock
1. Press the “programming button” of the lock to enter “programming mode master”.

-> you hear a ticking sound while in “programming mode master”
2. Present a “regular_card” to define this card as a “programming_card”.

-> you hear a positive feedback sound, if programming succeeded.

Using the programming_card
Depending on the current lockmode, the programming_card behaves differently.
With some exceptions listed below, the programming_card will enter the “Programming Mode” (See “Programming Mode”).

Exceptions:

● In LOCKMODE_GYM, if the lock is locked, the programming_card unlock the lock. The current gym_card will be
deleted. Because the gym_card still contains the lockname, the gym_card has to be “cleaned” later (See “Card
Cleaner”).

Presenting the programming_card continuously for 15 seconds will delete all user_cards from the whitelist.

User_card

Defining user_cards
User_cards are cards listed in the “whitelist” (db used_card).
The following actions define/undefine a user_card:

● After entering the “Programming Mode” (See “Programming Mode”) while in LOCKMODE_NORMAL or
LOCKMODE_BOLT, cards can be defined/undefined

● Presenting a “clean” card in LOCKMODE_GYM with the door closed and the lock open will whitelist the card (define
a card)

● Unlocking with a card in LOCKMODE_GYM will remove the card from the whitelist (undefine the card)
● Using the BLE-API (See BLE-API: Whitelist)

Card_mode_normal “Software: Standard”
This card can only be used in “Programming Mode” and will be rejected with a negative feedback sound in all other modes.
This card does:

● Set lockmode to LOCKMODE_NORMAL
● Set battery_alarm_enabled to true
● Set alarm_door_open_time_s to 0
● Set lock_open_time_s to 4
● Will be acknowledged with a positive feedback sound, if successful

Card_mode_bolt “Software: Bolt”
This card can only be used in “Programming Mode” and will be rejected with a negative feedback sound in all other modes.
This card does:

● Set lockmode to LOCKMODE_BOLT
● Will be acknowledged with a positive feedback sound, if successful

This card does NOT
● Does not change the current lockstate

PS GmbH
Melisau 1255

6863 Egg / Austria

Card_mode_gym “Software: Gym”
This card can only be used in “Programming Mode” and will be rejected with a negative feedback sound in all other modes.
This card does:

● Set lockmode to LOCKMODE_GYM.
● Unlock the lock
● All user card entries are deleted from the whitelist.
● Will be acknowledged with a positive feedback sound, if successful

Card_mode_gym12 “Software: Gym-12h”
This card can only be used in “Programming Mode” and will be rejected with a negative feedback sound in all other modes.
This card does:

● Set lockmode to LOCKMODE_GYM.
● Unlock the lock
● All user card entries are deleted from the whitelist.
● Configure automatic opening in 12h: open_after_time_m = 12 * 60.
● Will be acknowledged with a positive feedback sound, if successful

Card_mode_cardcleaner “Software: Card Cleaner”
This card can only be used in “Programming Mode” and will be rejected with a negative feedback sound in all other modes.
This card does:

● Set lockmode to LOCKMODE_CARDCLEANER.
This card does NOT:

● Does not change the lockstate (does not lock or unlock)

Card_mode_alarm_door “Software: Door Alarm”
This card can only be used in “Programming Mode” and will be rejected with a negative feedback sound in all other modes.
This card has only an effect in LOCKMODE_NORMAL.
This card does:

● Enable the door open alarm by setting the configuration “alarm_door_open_time_s = 20”.
● The alarm appears in LOCKMODE_NORMAL 20 seconds after opening the door.
● The alarm appears 20 seconds after applying this card when the door is open.

This card does NOT:
● Does not change the lockmode! (Stay in “Normal”, “Bolt”, “Gym” or “Cardcleaner”)
● Does not change any other configuration

To disable the door alarm, reset with one of the lockmode cards from above or use the BLE-API.

Card_ble_onoff “Software: Bluetooth On / Off”
This card can only be used in “Programming Mode” and will be rejected with a negative feedback sound in all other modes.
This card does:

● Toggle the configuration “ble_enabled” between true and false.
● Depending on the value of ble_enabled: Enable or disable the bluetooth stack.
● Depending on the value of ble_enabled: Play a positive or negative acknowledgement sound.

This card does NOT:
● Does not change any other configuration

Card_alarm_battery “Battery check Off”
This card can only be used in “Programming Mode” and will be rejected with a negative feedback sound in all other modes.
This card does:

● Set the configuration “battery_alarm_enabled = false”
This card does NOT:

● Does not change any other configuration
To enable the battery alarm, do a factory reset or use the BLE-API.

Card_install “Open lock in factory mode”
This card works in “Programming Mode” and in normal mode:
It is only meant for factory testing: Thus, it opens the lock and closes it after the configured lock open time
(lock_open_time_s), if the lock’s history is empty. The unlock operation that is performed with this card is not added to the

PS GmbH
Melisau 1255

6863 Egg / Austria

history. Thus, this card can be used multiple times on the same lock, as long as no unlock operation via BLE or some user
card is performed.

“Programming Mode”
After entering the programming mode, the special card described above could be used to alter the configuration.

Additionally, while in LOCKMODE_NORMAL or LOCKMODE_BOLT, regular_card’s could be programmed to be user_card’s
and vice versa. This is done by storing (or deleting) the card UID in the whitelist table (db table user_card).

“Card Cleaner Mode”
The “Card Cleaner Mode” removes “locknames” stored on regular_cards in mf_sector/mf_block with key mf_key. With this, a
card will be “cleaned” and could be used to lock locks again.

“Normal Mode” / “Bolt Mode”
In this lockmodes, any user_card (whitelisted cards) will unlock the lock. In LOCKMODE_NORMAL the lock stays unlocked
for lock_open_time_s seconds (default 4s), in LOCKMODE_BOLT the lock stays unlocked until a user_card is placed again
in front of the lock (or via BLE-API lock)
If the lock was unlocked with “Unlock BOLT” from the BLE-API while in LOCKMODE_NORMAL, the lock does NOT
automatically lock after some time. This is, even if lock_open_time_s is set!
If the lock was unlocked with “Unlock NORMAL” from the BLE-API while in LOCKMODE_BOLT with lock_open_time_s set
to “0” or “max”, the lock behaves as if “Unlock BOLT” was received. This means: No automatic locking after some time.

“Gym Mode”
If no user_card is defined (UID whitelisted) for a lock, the lock is unlocked. The lock will not be locked and a negative sound
will be played, if the door is open (door switch).

Procedure to lock:

1. Close the door (door switch).
2. Present a regular_card with a “clean” lockname.

If the regular_card is not “clean” or the door is not closed, a negative sound is played and the locking procedure will
be aborted.

a. The lock writes its lockname on the settled sector.
b. The lock writes the UID on the whitelist.
c. If one write fails, the other write will be reverted, acknowledge with negative sound and abort
d. The lock closes.

Regular procedure to unlock

1. Present a card from the whitelist
a. The lock clears the lockname from the settled sector.
b. The lock unlocks
c. The whitelist will be cleared

Administrator procedure to unlock

1. Present the programming_card
a. The lock unlocks
b. The whitelist will be cleared

Unlock by open time

1. At “open time” (hh:mm)
a. The lock unlocks
b. The whitelist will be cleared

Unlock after defined time (in seconds)

1. “Open after time” seconds after locking the lock
a. The lock unlocks
b. The whitelist will be cleared

The regular unlock procedure “cleans” the card. With other unlock procedures the user card still contains the lockname and
stays “occupied”. The user card has to be “cleaned” with the “Card Cleaner Mode”.

PS GmbH
Melisau 1255

6863 Egg / Austria

Unlock requests issued from the BLE-API will be ignored while in GYM Mode!

Battery alarm
The battery level is measured before locking or unlocking the lock and after 50ms of applying load through a load resistor. If
the voltage measured at the powerpin of the MCU is below 2.5 V the alarm condition is entered:

● Unlocking is tried
● Locking will be blocked
● The battery alarm sounds for 120sec

Starting from version 0.11, the battery level is also measured at least once within 7 days, i.e. if the lock is not operated for at
least 7 days (and only then), a battery measurement is performed (and repeated after another 7 days of inactivity, and so
on). The battery level is measured exactly like it is done before locking or unlocking the lock, i.e. by applying a load. If the
measured value is below 2.3 V, the following sequence happens:

● Unlocking is tried
● Locking will be blocked
● The battery alarm sounds for 120sec

Always the last measured value is used to update the battery level value that is part of the BLE advertisement data.
The battery measurement and the battery alarm can both be disabled with the Special battery_alarm_card or by setting the
configuration battery_alarm_enabled=false via BLE-API. If battery_alarm_enabled=false, the battery level value that is part
of the BLE advertisement data is set to value 200, so BLE clients can detect the state of battery_alarm_enabled.

Fast NFC polling mode
In LOCKMODE_GYM and LOCKMODE_BOLT after closing the door, the firmware enters a “fast polling” mode - polling for
cards every 200ms. After 3seconds, the “normal polling” mode with 1800ms polling time starts.

Supported NFC Standards
In “Normal Mode” and “Standard Mode” only the UID of a card is read:

● ISO14443-3a (NfcA) with single, double or triple size UIDs (4, 7 or 10 bytes)
E.g.:

○ MIFARE UltraLight C
○ MiFARE Classic
○ MIFARE DESFire EV1

In “Gym Mode” in addition reading data from and writing data to the card is required. The firmware supports read/write with:

● MIFARE Classic protocol (MF Sector, Block) (ISO14443-3a)
E.g.:

○ MIFARE Classic EV1 1K, 2K or 4K
● MIFARE DESFire protocol (DF ApplicationID, DF FileID) (ISO14443-4, IsoDep)

E.g.:
○ MIFARE DESFire EV1

BLE-API

BLE Advertisement
The advertisement data is sent every second. If no device is asking for scan response
data only the advertisement data will be sent. In the other cases there will also be the scan
response data sent.

Advertisement Data

Byte Value Description
0 0x02 Length of next block in Byte
1 0x01 ad field type = Flags
2 0x06 Connectable/undirected
3 0x02 Length of next block in Byte
4 0x0A Ad field type = TX Power
5 0xF3 TX power in dBm
6 0x18 Length of next block in Byte
7 0xFF Ad field Type = Manufacturer Specific Data

PS GmbH
Melisau 1255

6863 Egg / Austria

8 0xFF Prototype Company Identifier Code - octet 2
9 0xFF Prototype Company Identifier Code –octet 1
10 0x00 – 0x64, 0xC8 Battery Percentage (0..100) or 200, if battery alarm is disabled
11 hcnt_lo History counter. Starting with 0 after factory
12 hcnt_hi reset. Wrap around to 0x0000 after 0xffff.
13 Lockstate 0x0A unlocked else locked
14 Doorstate 0x02 door opened else closed
15 Lock mode (bits 0..3) / Crypt mode (bit 7)
16 0x00-0xFF Open time of Lock in normal mode
17 - 20 version Binary firmware version (major, minor, patch, build)
21 - 25 mac[1:5] Mac Address, last 5 bytes.
26 - 30 Whitelist Version without Seconds (m, h, D, M, Y%100)

Scan Response Data

Byte Value Description
0 0x11 Length of next block in Byte
1 0x07 ad field type = Services 128 bit all
2 - 5 0x45523232 128bit for own Service
6 - 9 0x574F514B
10 - 13 0x53434F2D
14 - 17 0x4D4F4445
18 len Length of next block in Byte
19 0x09 Ad field Type = Complete Local Name
20 - 29 lockname Up to 10 Bytes lockname

GATT Server
Service: 4d4f4445-5343-4f2d-574f-514b45523232

This Service is for the Locks BLE specific stuff.

Advertise: True

Characteristics (Attributes: r: read, w: write, n: notifications)

UUID Attr Name
4d4f4445-5343-4f2d-574f-524a45523032 w Unlock
4d4f4445-5343-4f2d-574f-524a45523033 w Date
4d4f4445-5343-4f2d-574f-524a45523034 w Admin1
4d4f4445-5343-4f2d-574f-524a45523035 rw Admin2
4d4f4445-5343-4f2d-574f-524a45523036 w UUID
4d4f4445-5343-4f2d-574f-524a45523037 w Phonenum.
4d4f4445-5343-4f2d-574f-524a45523038 n Statenotify
4d4f4445-5343-4f2d-574f-524a45523039 rwn History
4d4f4445-5343-4f2d-574f-524a45523040 rwn Whitelist
4d4f4445-5343-4f2d-574f-524a45523041 rw Admin3
4d4f4445-5343-4f2d-574f-524a45523042 rwn Adminfields
4d4f4445-5343-4f2d-574f-524a45523043 r Crypt_Token
4d4f4445-5343-4f2d-574f-524a45523044 w Crypt_Unlock
4d4f4445-5343-4f2d-574f-514b45523001 w Ext.Interface

Unlock
All write operations to this characteristic are ignored if crypt mode configuration is set to CRYPT_ON.
If crypt mode configuration is set to CRYPT_OFF (the only mode before version 0.11), it is used for unlocking and
authorization as user / admin. If unlock mode is set to UNLOCK_ADMIN or UNLOCK_USER, the lock is not opened or
closed but it checks whether the sent admin or user key is correct or not and grants admin or user permissions.

To improve the stability of the application after successfully sending the UNLOCK command, it is recommended to
disconnect manually, without waiting for the lock to automatically disconnect.

PS GmbH
Melisau 1255

6863 Egg / Austria

Byte Description
0 - 5 Unlock key as ASCII numbers.
6 Unlock mode

Unlock key must have 6 Bytes
For 4 digit access keys you have to add two ‘0’-characters (e.g.: “123400” for key “1234”).
Sending a valid UNLOCK_ADMIN unlock key will give administrator permissions for this BLE session.

Mode Description
0x31 UNLOCK_NORMAL Open lock for as many seconds as specified in lock_open_time_s.
 Behaves like UNLOCK_BOLT while in LOCKMODE_BOLT
0x32 UNLOCK_BOLT (deprecated) open lock continuously
0x33 UNLOCK_ADMIN
0x34 UNLOCK_USER Acquire user permissions (e.g. for accessing history data) without opening
 the lock

To unlock the lock:

1. Send Date (optional. Skip Date to speed-up the unlocking. RTC will be used instead)
2. Send Phone number (optional. Skip to speed-up unlocking. History will log empty phone number)
3. Send UUID (optional, but mandatory)
4. Send Unlock

a. Unlocking
b. Add History entry with information from above

If in the same BLE-Session a “Date” was sent and the unlock key is correct (user key or admin key), the date timestamp will
be used to set/reset the RTC.

Date
Prepare setting the RTC (real time clock). The RTC will be set later after authorizing with an unlock key (see Unlock). The
unlock key has to be sent in the same BLE connection. The RTC provides timestamps for history entries (lock/unlock
events).

Sending the Date is optional. Unlock history entries will use the date from the RTC if the Date was not sent.

Byte Description
0 Seconds
1 Minutes
2 Hour of day
3 Day of month
4 Month
5 Year % 100 (last two digits, starting with year 2000 as 00.)

UUID
The UUID is used to give every user an unique ID for example on Android devices the ANDROID_ID
can be used. The UUID will be logged in the history.

Sending the UUID is optional.

Byte Description
0 - 9 Unique ID of User e.g. ANDROID_ID

Phone Number
The phone number is used so that it’s easy to see who locked/unlocked the lock.
The phone number will be logged in the history.

Sending the phone number is optional.

Byte Description
0 - 9 Name/Nick Name/Phone Number/ or anything else

PS GmbH
Melisau 1255

6863 Egg / Austria

Admin1
Access to Admin1 requires administrator permissions. The admin key (UNLOCK_ADMIN) has to be sent in the same BLE
session.
Writing to Admin1 sets the lockname. Reading from Admin1 is not allowed (reading the lockname is possible with Adminfield
0 “lockname”).

Byte Value Description
0 0x02 Header for Lock name
1 0x00 Unused
2-11 Lockname (fill with 0’s if length of name is smaller than 10)

Admin2
Access to Admin2 requires administrator permissions. The admin key (UNLOCK_ADMIN) has to be sent in the same BLE
session.
With Admin2 the access key, the admin key and the opening time in normal mode can be changed. This is still true, for
version 0.11 and later. However, from version 0.11 on, the values for access key and admin key are ignored in write
operations, if crypt mode configuration is set to CRYPT_ON.

Byte Description
0 - 3 Access key (Byte 4 and 5 will be set internally with 48 (ASCII ‘0’))
 Used by UNLOCK_NORMAL and UNLOCK_BOLT
4 Opening time in seconds
5 Opening time in seconds (repetition of byte 4 when reading, ignored when writing to it)
6 - 11 Admin key (UNLOCK_ADMIN)
12 - 14 Desfire Application ID (3 bytes)
15 Desfire File ID (1 byte)
16 - 17 RFID reaction time in ms (2 bytes, LSB first)

Desfire AID (12-14) and Desfire FID (15) are needed in case that Desfire Cards are used in gym or
card cleaner mode. AID is a 3 byte number and FID one byte. For AID the number 0x000000 is
not allowed as this is used for different purposes.
RFID reaction time is a two byte number which defines the time in ms between two card available
checks. When reading the admin2 characteristic, access and admin key are set to zero due to security issues.

Admin3
Writing to Admin3 requires administrator permissions. The admin key (UNLOCK_ADMIN) has to be sent in the same BLE
session.

Byte Value Description
0 lockmode The lockmode the lock runs in (See config: lockmode)
1 alarm_door_open_time_s

Door open alarm 0 turned off else seconds until alarm starts
(See config: alarm_door_open_time_s)

2 - 3 reaction_time_100ms
 16bit reaction time in 0.1s steps
 (LSB first, See config: reaction_time_100ms)
4 open_after_time ???
5 Sector 0 – 15 Mifare sector (See config: mf_sector)
6 Block 0 – 2 Mifare block. If Sector is 0 only 1 – 2 is allowed (See config: mf_block)
7 - 12 A-Key Mifare access key (See config: mf_key)
13 0x00 RFID disabled

0x01 RFID enabled (See config: rfid_enabled)
14 0x00 BLE disabled,

0x01 BLE enabled (See config: ble_enabled)
15 0x00 Battery alarm disabled
 0x01 Battery alarm enabled (See config: battery_alarm_enabled)
16 0x00 External Interface disabled

0x01 External Interface enabled (See config: ext_interface_enabled)

PS GmbH
Melisau 1255

6863 Egg / Austria

If the field “lockmode” is changed from any other value to value GYM, all User-Cards are deleted from the Whitelist.

Adminfields
Writing to Adminfields requires administrator permissions. The admin key (UNLOCK_ADMIN) has to be sent in the same
BLE session.

Reading from Adminfields is implemented by writing a “Read request” together with the field id of the field to be read into the
characteristic “Adminfields”. The response is sent with a notification of StateNotify.

Attention: Even if the characteristic “Adminfields” has the BLE-Attribute “Notification”, responses are sent through StateNotify
notifications and NOT notifications of Adminfields! Unfortunately, changing the BLE-Adminfields-API to behave like the
history and whitelist API would break compatibility with existing applications. Do not expect any notifications from the
Adminfields characteristic.

Byte Value Description
0 0x00 Write request
 0x01 Read request
1 FieldNo field number to read from or write to
2-17 Data Data to write (only used in write requests)

Existing admin fields

FieldNo Description
0 lockname (10 bytes) (alternative to admin1) (See config: lockname)
1 Access Key (4 bytes) (also admin2), no read access, can only be written if crypt mode configuration is set to

CRYPT_OFF, otherwise write operations will fail with an error response
2 Admin Key (6 bytes) (also admin2) , no read access, can only be written if crypt mode configuration is set to

CRYPT_OFF, otherwise write operations will fail with an error response
3 Opening time in seconds (only first byte is used)
4 Lock Mode (Card Cleaner, Normal, Gym...) (only first byte is used)
5 Door open alarm
6 Reaction time in 0.1 Second steps
7 Open after ... seconds
8 Sector 0-15
9 Block 0 – 2 if Sector is 0 only 1 – 2 is allowed
10 A-Key
11 RFID enable/disable
12 BLE enable/disable
13 Battery alarm enable/disable
14 External Interface enable/disable
15 Desfire Application ID (3 bytes)
16 Desfire File ID (1 byte)
17 RFID reaction time in ms (2 bytes, LSB first)
18 Crypt Access Key (16 bytes), no read access, writes new value to crypt_key_user if crypt mode configuration is set

to CRYPT_ON, otherwise write operations fail with an error response
19 Crypt Admin Key (16 bytes), no read access, writes a new value to crypt_key_admin and sets crypt mode to

CRYPT_ON
If the field “Lock Mode” is changed from any other value to value GYM, all User-Cards are deleted from the Whitelist.

For read/write request responses see “State Notifications”

Setting a new value for crypt_key_user works the following way (only supported, if crypt mode configuration is set to
CRYPT_ON):
Perform a write request with FieldNo 18 and the new value for crypt_key_user encrypted with the current value of
crypt_key_admin. This way, the value for crypt_key_user is never transferred unencrypted and can thus not be sniffed.

Setting a new value for crypt_key_admin works the following way:
Perform a write request with FieldNo 19 and the new value for crypt_key_admin encrypted with the current value of
crypt_key_admin (i.e. the crypt_key_admin value that is stored in configuration when the write operation is performed). This
way, the new value for crypt_key_admin is never transferred unencrypted and can thus not be sniffed, as long as the current
crypt_key_admin value is not known to the sniffer. In order to securely set a new value for crypt_key_admin when the
current value of crypt_key_admin is publicly known, the BLE write operation must be performed in an environment that can
ensure that no sniffers are present. This applies in particular to setting crypt_key_admin for the first time when the default
settings are still active: Since in this scenario, the value for crypt_key_admin needs to be encrypted with the publicly known

PS GmbH
Melisau 1255

6863 Egg / Austria

default value for crypt_key_admin (all 0s), a sniffer can easily eavesdrop and decrypt the transferred encrypted value for
crypt_key_admin.

As the locks are shipped with crypt mode being deactivated (CRYPT_OFF), the following sequence of write operations is
required in order to activate crypt mode (CRYPT_ON):

- Write (unencrypted) admin key to characteristic Unlock with mode UNLOCK_ADMIN in order to get admin
permissions.

- Perform a write request to characteristic Adminfields with FieldNo 19 and a 16 bit value that is calculated the
following way: the desired value for crypt_key_admin, encrypted with the default value for crypt_key_admin (all 0s).

- At this point, crypt mode is already activated, however crypt_key_user is still set to its default value (all 0s). Thus,
also perform a write request to characteristic Adminfields with FieldNo 18 and a 16 bit value that is calculated the
following way: the desired value for crypt_key_user, encrypted with the previously set value for crypt_key_admin.

From that point on, the characteristic Crypt_Unlock must be used instead of the characteristic Unlock in order to perform
unlock operations.
Be aware that it is not possible to deactivate encryption mode after it was activated, as this mode is the preferred mode of
operation. Unencrypted operation is only supported for backward compatibility. If you need to go back to unencrypted
operation, a factory reset is required.

Crypt_Token
Upon each read operation, this characteristic returns a random number. The lock uses this random number as a token and
remembers it until it is consumed. When the token is consumed, it is invalidated and can no longer be used for further
operations.

The token returned by this characteristic is required to perform unlock operations by writing to characteristic Crypt_Unlock.

Byte Description
0 - 15 Random number (token)

Crypt_Unlock
All write operations to this characteristic are ignored, if crypt mode configuration is set to CRYPT_OFF.
If crypt mode configuration is set to CRYPT_ON, this characteristic is used for unlocking and authorization as user / admin
and works exactly like the characteristic Unlock, but uses a 16 byte unlock secret for authentication.

Byte Description
0 - 15 Unlock secret
16 Unlock mode (see characteristic Unlock)

The unlock secret, the client needs to write to this characteristic must be calculated by encrypting the last value (token) that
was read from characteristic Crypt_Token with

- crypt_key_user for unlock mode UNLOCK_NORMAL and UNLOCK_USER
- crypt_key_admin for unlock mode UNLOCK_ADMIN

Thus, only a BLE client that knows the crypt_key_user or crypt_key_admin is able to perform the respective unlock
operation. Nevertheless, by sniffing the BLE data transfer, a sniffer cannot deduce crypt_key_user or crypt_key_admin.

Upon each write operation to this characteristic, the token is consumed and no longer valid.

In order to perform an unlock operation when crypt mode configuration is set to CRYPT_ON, a client always needs to
execute the following steps:

- read new token from Crypt_Token
- calculate unlock secret by encrypting this token with crypt_key_user or crypt_key_admin (depending on the unlock

mode)
- write unlock secret and unlock mode to characteristic Crypt_Unlock

BLE-History
Reading history entries require user or administrator permissions. The admin key (UNLOCK_ADMIN) or the user key
(UNLOCK_NORMAL, UNLOCK_BOLT) has to be sent in the same BLE session.

This is different to Specification 20.07.2020 and also different from the behaviour of previous locks! Former versions require
no permissions at all and therefore could be read by everyone including the UUIDs, phone numbers and usage times of the
history entries (lock/unlock events)!

PS GmbH
Melisau 1255

6863 Egg / Austria

Reading Applications (e.g. PS-Lock App) have to send authorization keys before trying to read history entries. CURRENT
VERSION (2020-07-23) DOES NOT AUTHORIZE AND THEREFORE GET NO HISTORY ENTRIES!

With the History API you can ask the lock for one history entry at the time. There are at most 100 entries stored addressed
by their index ranging from 0 to 99 (including).

To read history entries:

1. Enable notifications on characteristic “History”
2. Write one byte with the history index to “History”

a. Receive up to 4 notifications of “History” of that entry with:
i. UPDATE_DATE
ii. UPDATE_PHONE_OR_NAME
iii. UPDATE_UUID
iv. UPDATE_STATE_BLOCK

New entries are appended at the end of the list (with the highest index).
If all 100 entries are used, before appending a new entry, the list will be shifted down. The oldest entry with index 0 will be
replaced by the entry with index 1, index 1 by 2 and so on. The now free index 99 will be written with the new entry.

Asking for non existing entries will be silently ignored (asking for an index greater or equal to history count)!

History
Byte Description
0 Index of history entry to read [0;99]. If the byte is 101, the number of history entries will be notified
 (history count)

Notifications
In response to a “read history entry” request:

Byte Value Description
0 index The requested history index
1 0x00 UPDATE_DATE
2-7 Date in 6 bytes for YY MM DD hh mm ss

Byte Value Description
0 index The requested history index
1 0x01 UPDATE_PHONE_OR_NAME
2-11 Phone number or name.

Byte Value Description
0 index The requested history index
1 0x02 UPDATE_UUID
2-11 UUID

Byte Value Description
0 index The requested history index
1 0x01 UPDATE_STATE_BLOCK
2 0x00 unlock

0x01 lock
0x02 automatic lock (lock after open time in “unlock normal”)

In response to a “read history count” request:

Byte Value Description
0 101 Magic for “history count”
1 history_count

BLE-Whitelist
The Whitelist is for saving the UID’s of the cards which should have access to the lock. Commands are sent by writing into
this characteristic. Responses can be read afterwards or by listening for notifications of this characteristic.
There are four possible commands on this characteristic sent in the first byte:

PS GmbH
Melisau 1255

6863 Egg / Austria

Byte Value Description
0 0x00 Delete
0 0x01 Write
0 0x02 Read
0 0x03 Number of entries (count)
0 0x04 Whitelistversion

Whitelist delete
Send:
Byte Value Description
0 0x00 Delete

Response:
Byte Value Description
0 0x00 Delete
1 0x00 WHITELIST_DELETE_OK
 0x01 WHITELIST_DELETE_NOT_OK

Whitelist write
Add a card ID to the whitelist

Send:
Byte Value Description
0 0x01 Write
1 id_len Card ID length
2-8 cardID Up to 7 bytes of Card ID.
9-18 name Name associated with this card
19 type Cardtype
 0x00 disabled (delete this Card ID (user or programming card), name is ignored)
 0x01 enabled (add a user card)
 0x02 programming card (set the programming card)

Response:
Byte Value Description
0 0x01 Write
1 0x00 WHITELIST_WRITE_OK
 0x01 WHITELIST_WRITE_NOT_OK

Whitelist read entry
Read from the whitelist.

Send:
Byte Value Description
0 0x02 Read
1 num Entry number [0..count-1]

Response:
Byte Value Description
0 0x02 Read
1-4 cardId32 32bit CardID (Only the first 4 bytes of 7 byte Card IDs will be returned!)
5-14 name Name associated with this card
15 0x00 disabled (Requested a number >= count)
 0x01 enabled
 0x02 programming card (API_DUAL_LOCK.2018-08-06.pdf does not describe how to return the programming
card, probably expecting always 0x01?)

Whitelist get number of entries (count)
Return the number of defined Card IDs in the whitelist.

PS GmbH
Melisau 1255

6863 Egg / Austria

Send:
Byte Value Description
0 0x03 Number of entries (count)

Response:
Byte Value Description
0 0x03 Cmd: Number of entries (count)
1 count Number of entries

State Notifications
The State Notification characteristic is used to notify about state changes or to respond to requests by other characteristics
(e.g. Adminfields).

The format of a StateNotification depends on the kind. Byte 0 describes the kind.

Byte Value Description
0 0x00 HANDLE_BATT_UPDATE

0x01 HANDLE_KEY_UPDATE
0x02 HANDLE_LOCK_UPDATE
0x03 HANDLE_ADMIN3_UPDATE
0x04 HANDLE_ADMIN_FIELD_UPDATE (Response of Adminfields read requests)

1-x See below

Byte Value Description
0 0x00 HANDLE_BATT_UPDATE
1 percent Battery percentage [0;100]

In response to “Unlock” requests:

Byte Value Description
0 0x01 HANDLE_KEY_UPDATE
1 0x00 KEY_NOT_OK

0x01 KEY_OK
0x02 Unused
0x03 KEY_BLOCKED after more than 3 wrong tries lock is blocked for 2 minutes
0x04 LOCK_WORKING if UNLOCK_NORMAL and open_time not yet expired
If KEY_BLOCKED a third byte is added, which contains the time the lock is blocked in minutes.

Any time, usually some time after a “Unlock” request:

Byte Value Description
0 0x02 HANDLE_LOCK_UPDATE
1 0x00 LOCK_LOCKED

0x01 LOCK_UNLOCKED
0x02 LOCK_BOLTED

Responses to writes...

Byte Value Description
0 0x02 HANDLE_LOCK_UPDATE
1 0x03 LOCK_ADMIN_NAME_WRITE
2 0x00 LOCK_ADMIN_NAME_WRITE_SUCCESS

0x01 LOCK_ADMIN_NAME_WRITE_ERROR

Byte Value Description
0 0x02 HANDLE_LOCK_UPDATE
1 0x04 LOCK_ADMIN_KEYS_WRITE
2 0x00 LOCK_ADMIN_KEYS_WRITE_SUCCESS

0x01 LOCK_ADMIN_KEYS_WRITE_ERROR

Byte Value Description
0 0x02 HANDLE_LOCK_UPDATE
1 0x05 DOOR_STATE

PS GmbH
Melisau 1255

6863 Egg / Austria

2 door state

Byte Value Description
0 0x03 HANDLE_ADMIN3_UPDATE
1 0x06 LOCK_ADMIN3_WRITE
2 0x00 LOCK_ADMIN3_WRITE_SUCCESS

0x01 LOCK_ADMIN3_WRITE_ERROR

Attention: The notification does not distinguish between read and write request responses. In case of read, starting with byte
2 is data from the field. In case of write, the format is the same, but byte 2 describes the error code. Remember if you issued
a read or write request to understand the notification correctly!

Response to Adminfields read request.

Byte Value Description
0 0x04 HANDLE_ADMIN_FIELD_UPDATE (Response of Adminfields read requests)
1 FieldNo
2 Data Data of field FieldNo. Length and encoding depends on the FieldNo.

Response to Adminfields write request.

Byte Value Description
0 0x04 HANDLE_ADMIN_FIELD_UPDATE (Response of Adminfields write requests)
1 FieldNo
2 0x00 Success

0x01 Error

OTA Firmware updates
Over the air firmware updates are implemented as described by Nordic “Device firmware updates (DFU)”:
https://infocenter.nordicsemi.com/topic/ug_nrfconnect_ble/UG/nRF_Connect_BLE/nRF_Connect_DFU.html

To enable the OTA-DFU feature in the firmware, a MBR containing a bootloader and bootloader settings must be flashed in
addition to the softdevice s132_nrf52_7.0.1_softdevice.hex and the firmware (application). If enabled, the “Secure DFU
Service” (Service 0xFE59) is available to trigger an OTA device firmware update.

The update could be initialised by any application supporting the update procedure described in the link above (e.g. “NRF
Connect” by Nordic allows uploading a (cryptographic signed) firmware to the device).

Custom applications (e.g. “PS lock”) might implement the OTA-DFU by using Android/iOS libraries from the SDK.

